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We consider a Bayesian approach to nonlinear inverse problems in which the unknown
quantity is a spatial or temporal field, endowed with a hierarchical Gaussian process prior.
Computational challenges in this construction arise from the need for repeated evaluations
of the forward model (e.g., in the context of Markov chain Monte Carlo) and are com-
pounded by high dimensionality of the posterior. We address these challenges by introduc-
ing truncated Karhunen–Loève expansions, based on the prior distribution, to efficiently
parameterize the unknown field and to specify a stochastic forward problem whose solu-
tion captures that of the deterministic forward model over the support of the prior. We
seek a solution of this problem using Galerkin projection on a polynomial chaos basis,
and use the solution to construct a reduced-dimensionality surrogate posterior density
that is inexpensive to evaluate. We demonstrate the formulation on a transient diffusion
equation with prescribed source terms, inferring the spatially-varying diffusivity of the
medium from limited and noisy data.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Inverse problems arise from indirect observations of a quantity of interest. Observations may be limited in number rel-
ative to the dimension or complexity of the model space, and the action of the forward operator may include filtering or
smoothing effects. These features typically render inverse problems ill-posed—in the sense that no solution may exist, multi-
ple solutions may exist, or solutions may not depend continuously on the data. In practical settings, where observations are
inevitably corrupted by noise, this presents numerous challenges.

Classical approaches to inverse problems have used regularization methods to impose well-posedness, and solved the
resulting deterministic problems by optimization or other means [1]. However, important insights and methodologies
emerge by casting inverse problems in the framework of statistical inference [2,3]. Here we focus on Bayesian approaches,
which provide a foundation for inference from noisy and limited data, a natural mechanism for regularization in the form of
prior information, and in very general cases—e.g., nonlinear forward operators, non-Gaussian errors—a quantitative assess-
ment of uncertainty in the results [4,5]. Indeed, the output of Bayesian inference is not a single value for the quantity of inter-
est, but a probability distribution that summarizes all available information about this quantity, be it a vector of parameters
or a function (i.e., a signal or spatial field). Exploration of this posterior distribution—and thus estimating means, higher
. All rights reserved.
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moments, and marginal densities of the inverse solution—may require repeated evaluations of the forward operator. For
complex physical models and high-dimensional model spaces, this can be computationally prohibitive.

Our previous work [6] sought to accelerate the Bayesian solution of inverse problems through the use of stochastic spec-
tral methods. Based on polynomial chaos (PC) representations of random variables and processes [7–12], stochastic spectral
methods have been used extensively for forward uncertainty propagation—characterizing the probability distribution of the
output of a model given a known distribution on the input. These methods constitute attractive alternatives to Monte Carlo
simulation in numerous applications: transport in porous media [13], structural mechanics [14], thermo-fluid systems [15–
17], electrochemical microfluid systems [18], and reacting flow [19]. In the inverse context, the Bayesian formulation in [6]
constructs a stochastic forward problem whose random inputs span the support of the prior and seeks its solution using
Galerkin methods. The prior support may be partitioned, but for each partition the stochastic forward problem is solved only
once. The resulting spectral representations of the forward operator enter the likelihood function, and exploration of the pos-
terior is recast as Monte Carlo sampling of the variables underlying the PC expansion. We used this scheme to infer param-
eters appearing nonlinearly in a transient diffusion equation, demonstrating exponential convergence to the true posterior
and substantial speedup.

Other attempts at accelerating Bayesian inference in computationally intensive inverse problems have relied on reduc-
tions or surrogates for the forward model, constructed through repeated forward simulations. Wang and Zabaras [20] use
proper orthogonal decomposition (POD) [21] to accelerate forward model calculations in a radiative source inversion prob-
lem. The empirical basis used for model reduction is pre-constructed using full forward problem simulations. The choice of
inputs to these simulations—in particular, how closely the inputs must resemble the inverse solution—can be important [20].
Balakrishnan et al. [22] introduce a PC representation of the forward model in a groundwater transport parameter identifi-
cation problem, but obtain the PC coefficients by collocation; again, this process depends on a series of ‘‘snapshots” obtained
from repeated forward simulations. In the statistical literature, under the headline of ‘‘Bayesian parameter calibration”,
Gaussian processes have been used extensively as surrogates for complex computational models [23]. These approaches
treat the forward model as a black box, and thus require careful attention to experimental design and to modeling choices
that specify the mean and covariance of the surrogate Gaussian process. A different set of approaches retain the full forward
model but use simplified or coarsened models to guide and improve the efficiency of Markov chain Monte Carlo (MCMC).
Christen and Fox [24] use a local linear approximation of the forward model to improve the acceptance probability of pro-
posed moves, reducing the number of times the likelihood must be evaluated with the full forward model. Higdon et al. [25]
focus on the estimation of spatially distributed inputs to a complex forward model. They introduce coarsened representa-
tions of the inputs and apply a Metropolis-coupled MCMC scheme [26] in which ‘‘swap proposals” allow information from
the coarse-scale formulation to influence the fine-scale chain. Efendiev et al. [27] also develop a two-stage MCMC algorithm,
using a coarse-scale model based on multiscale finite volume methods to improve the acceptance rate of MCMC proposals.

This paper extends the stochastic spectral methodology of [6] to inverse problems whose solutions are unknown func-
tions—i.e., spatial or temporal fields. In doing so, we also explore dimensionality reduction in the Bayesian formulation of
inverse problems, and the dependence of dimensionality on both the prior and the data. Inverse problems involving fields
are vital to applications ranging from geophysics to medical imaging. Spatial fields may correspond to inhomogeneous mate-
rial properties, such as permeabilities, diffusivities, or densities, or may represent distributed source terms in transport
equations.

Estimating fields rather than parameters typically increases the ill-posedness of the inverse problem, since one is recov-
ering an infinite-dimensional object from finite amounts of data. Obtaining physically meaningful results requires the injec-
tion of additional information on the unknown field—i.e., regularization [3]. A standard Bayesian approach is to employ
Gaussian process (GP) or Markov random field (MRF) priors [28,4,29]. Most studies then explore the value of the field on
a finite set of grid points [30]; the dimension of the posterior is tied to the discretization of the field. This recipe presents
difficulties for stochastic spectral approaches, however, as the size of a PC basis does not scale favorably with dimension
[9]. Moreover, with any degree of smoothness, the value of the field at each grid point hardly represents an independent
direction.

Ideally, one should employ a representation that reflects how much information is truly required to capture variation
among realizations of the unknown field. To this end, we introduce a Karhunen–Loève (K–L) expansion based on the prior
random process, transforming the inverse problem to inference on a truncated sequence of weights of the K–L modes. Other
recent work has also employed K–L expansions in the context of statistical inverse problems. Li and Cirpka [31] emphasize
the role of K–L expansions in enabling geostatistical inversion on unstructured grids. Efendiev et al. [27] use K–L expansions
to parameterize the log-permeability field in their two-stage MCMC scheme, and introduce constraints among the weights in
order to match known values of the permeability at selected spatial locations. In contrast to [31], we use a fully Bayesian
approach, generating true conditional realizations from a non-Gaussian posterior.

A more fundamental distinction of the present work is that we combine a K–L representation of the unknown field with
spectral methods for uncertainty propagation. In particular, the Karhunen–Loève representation of a scaled Gaussian process
prior defines the uncertainty that is propagated through the forward model with a stochastic Galerkin scheme. The determin-
istic forward model, originally specified by (a system of) partial differential equations, is thus replaced by stochastic PDEs;
numerical approaches to such systems, in which random fields appear as boundary conditions or coefficients, have seen
extensive development [9,16,32–35]. Uncertainty propagation yields a polynomial approximation of the forward operator
over the support of the prior. This approximation then enters a reduced-dimensionality surrogate posterior, which we
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explore with MCMC. The overall scheme avoids repeated forward simulations, and the computational cost per MCMC iter-
ation becomes negligible compared to the cost of a full forward solution.

We demonstrate our scheme with a nonlinear forward model, and develop a fully Bayesian treatment of the problem in
which hyperparameters describing the prior covariance are estimated simultaneously with the unknown field in a joint pos-
terior distribution. To place the present Bayesian formulation in broader context, we recall connections between the K–L
expansion and regularization penalties in the reproducing kernel Hilbert space (RKHS) norm corresponding to the prior
covariance. We explore convergence both with respect to the number of K–L modes and the order of the PC basis. We also
examine the efficiency of MCMC, quantify the limiting distribution of the K–L modes, and explore the impact of data reso-
lution on the approach to this distribution. Significant gains in computational efficiency are achieved, with speedups of more
than two orders of magnitude over a grid-based Bayesian scheme employing repeated forward solutions.

2. Formulation

We begin by introducing the essential building blocks of the present formulation: Gaussian processes (Section 2.1), the
Karhunen–Loève (K–L) representation of a stochastic process (Section 2.2), and the Bayesian approach to inverse problems
(Section 2.3). All three pieces are brought together in Section 2.4, where the K–L expansion of a Gaussian process prior en-
ables a reduced-dimensionality approach to Bayesian inference. Stochastic spectral methods for forward uncertainty prop-
agation are then introduced in Section 2.5, and used to accelerate the K–L/Bayesian approach in Section 2.5.2. Finally,
connections among Gaussian priors, the K–L expansion, and regularization are reviewed in Section 2.6.

2.1. Gaussian processes

Let ðX;U; PÞ be a probability space, where X is a sample space, U is a r-algebra over X, and P is a probability measure on U .
Also, let D � Rn be a bounded spatial domain. If MðxÞ : X! R is a U-measurable mapping for every x 2 D, then
M : X� D! R is a random field. Mðx;xÞ, for x 2 X, can thus be seen as a collection of real-valued random variables indexed
by x 2 D. Alternatively, one can view Mð�Þ as a random variable taking values in RD, the space of all real-valued functions on
D. Though our presentation will focus on ‘random fields’ (typically signifying processes indexed by a spatial coordinate), the
developments below are applicable to processes indexed by time or by both time and space.

If, for any n P 1 we have
ðMðx1Þ; . . . ;MðxnÞÞ ¼i:d: ðMðx1 þ sÞ; . . . ;Mðxn þ sÞÞ; ð1Þ
where ¼i:d: denotes equality in distribution, s is a spatial shift, and fxi;xi þ sgn
i¼1 2 D, then M is said to be stationary [36]. If in

addition, all finite-dimensional distributions of M are multivariate normal, then M is a stationary Gaussian random field, or
simply a stationary Gaussian process (GP). Let MðnÞ ¼ ðMðx1Þ; . . . ;MðxnÞÞ denote the restriction of M to a finite set of indices.
Then the characteristic function of MðnÞ is [36]
/MðkÞ � E½expðikT MðnÞÞ� ¼ exp ikTl� 1
2

kTRk

� �
; k 2 Rn; ð2Þ
where the mean is spatially invariant, l � l1n, and entries of R are values of the covariance function C:
Rij ¼ Cðxi;xjÞ
� Cov½MðxiÞ;MðxjÞ� ¼ E½ðMðxiÞ � lÞðMðxjÞ � lÞ� ð3Þ
¼ eCðxi � xjÞ: ð4Þ
Gaussian processes have finite second moments; that is, MðxÞ 2 L2ðXÞ for every x [37]. If R is invertible, the finite-dimen-
sional density of order n of the Gaussian process is then
pðmjl;RÞ ¼ 1

ð2pÞn=2jRj1=2 exp �1
2
ðm� lÞTR�1ðm� lÞ

� �
; ð5Þ
where m ¼ ðmðx1Þ; . . . ;mðxnÞÞ. If we further restrict C to depend only on the distance between xi and xj, that is we puteCðdÞ ¼ f ðkdkÞ, then the stationary GP is called isotropic [38]. It is common to specify the covariance function with scale
and range parameters h1 and h2, respectively [28]:
eCðdÞ ¼ h1q
kdk
h2

� �
: ð6Þ
Here qð�Þ is a correlation function, positive definite with qð0Þ ¼ 1 [25], e.g., qðdÞ ¼ e�d or qðdÞ ¼ e�d2
.

Gaussian processes are extensively employed as priors in Bayesian inference [38]. In particular, conceiving of the GP as a
prior over functions motivates Gaussian process regression [39], also known as kriging in spatial statistics [40]; further appli-
cations include classification, with ties to support vector machines and other kernel methods [41]. Depending on the covari-
ance kernel, realizations of a Gaussian process may be smooth or periodic, or for non-stationary kernels, capture certain
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trends [42]. Gaussian process priors can thus inject regularity by assigning low probability to fields with undesirable prop-
erties. See Section 2.6 for a more formal discussion of Gaussian process priors and regularization.

2.2. Karhunen–Loève expansion

Let Mðx;xÞ be a real-valued random field with finite second moments, mean lðxÞ, and a covariance function that is con-
tinuous on D� D, with D bounded. Then M has the following representation, termed a Karhunen–Loève (K–L) expansion
[43]:
1 Suf
D 2 Rn

a.s. con
Mðx;xÞ ¼ lðxÞ þ
X1
k¼1

ffiffiffiffiffi
kk

p
ckðxÞ/kðxÞ: ð7Þ
In general, this equality holds pointwise and in the mean square sense; that is, convergence is in L2ðXÞ for each x 2 D. If M is
Gaussian and almost surely continuous, then convergence is uniform over D with probability one [44].1 kk and /kðxÞ are
eigenvalues and eigenfunctions of the linear operator corresponding to the covariance kernel C:
Z

D
Cðx1;x2Þ/kðx2Þdx2 ¼ kk/kðx1Þ: ð8Þ
By the assumptions on M, the covariance kernel is symmetric and positive semidefinite, and thus by Mercer’s theorem we
have [36,46]
Cðx1; x2Þ ¼
X1
k¼1

kk/kðx1Þ/kðx2Þ; ð9Þ
where the eigenfunctions /kðxÞ are continuous and form a complete orthonormal system in L2ðDÞ. The random variables
ckðxÞ are uncorrelated with zero mean and unit variance:
Eck ¼ 0; E½cjck� ¼ djk: ð10Þ
These variables are in general non-Gaussian
ckðxÞ ¼
1ffiffiffiffiffi
kk
p

Z
D
ðMðx;xÞ � lðxÞÞ/kðxÞdx ð11Þ
but if M is also a Gaussian process, the ck are Gaussian and independent, ck � Nð0;1Þ.
The K–L expansion is optimal in the following sense. Of all possible orthonormal bases for L2ðDÞ, the f/kðxÞg satisfying (8)

minimize the mean-squared error in a finite linear representation of Mð�Þ [9]. That is, they minimize
Z
X�D

Mðx;xÞ � lðxÞ �
XK

k¼1

ffiffiffiffiffi
kk

p
ckðxÞ/kðxÞ

 !2

dPðxÞdx ð12Þ
for any K P 1. As a result, the K–L expansion is an extremely useful tool for the concise representation of stochastic pro-
cesses. It has close analogues in data reduction (i.e., principal components analysis), model reduction (proper orthogonal
decomposition) [47], and linear algebra (SVD). If Mð�Þ is approximated by a K-term K–L expansion,
MKðx;xÞ ¼ lðxÞ þ
XK

k¼1

ffiffiffiffiffi
kk

p
ckðxÞ/kðxÞ; ð13Þ
the covariance function of MK is simply
CKðx1;x2Þ ¼
XK

k¼1

kk/kðx1Þ/kðx2Þ; ð14Þ
which converges uniformly to (9) as K !1 [44]. In particular, the total variance or ‘‘energy” of MK is
Z
D

E½MKðx;xÞ � lðxÞ�2dx ¼
Z

D
CKðx; xÞdx ¼

XK

k¼1

kk ð15Þ
following from the orthonormality of the f/kðxÞg.
ficient conditions for the continuity of Gaussian processes are detailed in Adler [44]. Abrahamsen [45] suggests that any Gaussian process on compact
with a continuous mean and a continuous and ‘‘reasonable” covariance function will satisfy these conditions. Covariance functions that provably yield
tinuous Gaussian processes include Gaussian, exponential, spherical, Matérn, spline, and polynomial kernels, along with numerous others [44,38].
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2.3. Bayesian approach to inverse problems

Bayesian approaches to inverse problems have received much recent interest [48,49,4], with applications ranging from
geophysics [50,51] and climate modeling [52] to heat transfer [53,20]. We review this approach briefly below; for more
extensive introductions, see [4,5,48].

Consider a forward problem defined as follows:
d 	 GðmÞ: ð16Þ
Here m is a vector of model parameters or inputs and d is a vector of observable quantities, or data; for simplicity, we let
both be real-valued and finite-dimensional. The forward model G yields predictions of the data as a function of the param-
eters. In the Bayesian setting, m and d are random variables. We use Bayes’ rule to define a posterior probability density for
m, given an observation of the data d:
pðmjdÞ / pðdjmÞpmðmÞ: ð17Þ
In the Bayesian paradigm, probability is used to express knowledge about the true values of the parameters. In other
words, prior and posterior probabilities represent degrees of belief about possible values of m, before and after observing
the data d.

Data thus enters the formulation through the likelihood function pðdjmÞ, which may be viewed as a function of m:
LðmÞ � pðdjmÞ. A simple model for the likelihood assumes that independent additive errors account for the deviation be-
tween predicted and observed values of d:
d ¼ GðmÞ þ g; ð18Þ
where components of g are i.i.d. random variables with density pg. The likelihood then takes the form
LðmÞ ¼ pgðd� GðmÞÞ ¼
Y

i

pgðdi � GiðmÞÞ: ð19Þ
Additional information on the model parameters may enter the formulation through the prior density, pmðmÞ. Prior models
may embody simple constraints on m, such as a range of feasible values, or may reflect more detailed knowledge about the
parameters, such as correlations or smoothness. In the absence of additional information, one may choose a prior that is
uninformative. Here we will focus on Gaussian process priors, which for finite-dimensional m take the form of (5).

If parameters /m of the prior density pmðmj/mÞ or parameters /g of the error model pgðgij/gÞ are not known a priori, they
may become additional objects for Bayesian inference. In other words, these hyperparameters may themselves be endowed
with priors and estimated from data [48]:
pðm;/m;/gjdÞ / pðdjm;/gÞpmðmj/mÞpð/gÞpð/mÞ: ð20Þ
The resulting joint posterior over model parameters and hyperparameters may then be interrogated in various ways—e.g., by
marginalizing over the hyperparameters to obtain pðmjdÞ; or first marginalizing over m and using the maximizer of this den-
sity as an estimate of the hyperparameters; or by seeking the joint maximum a posteriori estimate or posterior mean of m,
/m, and /g [54,48]. In the present study, we will introduce hyperparameters to describe aspects of the prior covariance.

2.4. Dimensionality reduction in inverse problems

Now we integrate concepts from the previous three sections. Consider an inverse problem in which the unknown quan-
tities comprise a real-valued field MðxÞ. In a computational setting, this field and the forward model must be discretized. If
MðxÞ can be adequately represented on a finite collection of points fxign

i¼1 2 D, then we can write both the prior and posterior
densities in terms of m ¼ ðMðx1Þ; . . . ;MðxnÞÞ. That is, we can directly apply the Bayesian formulation described in the pre-
ceding section and explore the posterior density of m with Markov chain Monte Carlo (MCMC) [55]. The vector m, however,
will likely be high-dimensional. High dimensionality not only renders MCMC exploration of the posterior more challenging
and costly, but taxes the polynomial chaos formulation we introduce below to accelerate evaluations of the posterior density
[6].

Instead of exploring the value of MðxÞ on each of n index points, we appeal to the K–L expansion. Let MðxÞ be endowed
with a Gaussian process prior with mean lðxÞ and covariance kernel Cðx1;x2Þ; we denote this as M � GPðl;CÞ. Introduce
the corresponding K-term K–L representation of MðxÞ (13), with eigenvalues kk and eigenfunctions /kðxÞ satisfying (8). In
general, Mðx;xÞ is approached pointwise in mean square (and therefore in distribution) by MKðx;xÞ as K !1. For M a.s.
continuous (see Section 2.2), realizations Mðx;xÞ can be uniformly approximated as closely as desired by MKðx;xÞ—imply-
ing a corresponding realization cðxÞ � ðc1ðxÞ; . . . ; cKðxÞÞ—with probability one. Updating distributions of M, by condition-
ing on the data, is thus equivalent to updating the joint distribution of the mode strengths ck. We emphasize this
viewpoint by writing MKðx;xÞ ¼ MKðx; cðxÞÞ ¼ MKðcÞ, parameterizing M by the vector of weights c. Components ck are
independent under the Gaussian process prior, with ck � Nð0;1Þ. We thus truncate the K–L expansion at K terms and write
a posterior density for c:
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pðcjdÞ / pðdjcÞ
YK

k¼1

pðckÞ

/ pgðd� GðMKðcÞÞÞ
YK

k¼1

expð�c2
k=2Þ:

ð21Þ
The inverse problem has been transformed to an inference problem on the weights ck of a finite number of K–L modes. Note
that the spatial discretization of MðxÞ and of the forward model is now independent of the dimension of the posterior dis-
tribution. Here we have assumed the prior covariance to be completely known, thus ignoring hyperparameters in the expres-
sion for the posterior; we will relax this assumption in Section 3.

Truncating the K–L expansion in this context amounts to using a ‘‘modified” prior covariance kernel given by (14). Since
the eigenvalues kk decay—exponentially fast for a smooth covariance kernel [34], algebraically fast in other cases—a small
number of terms may be sufficient to capture almost all of the prior covariance. The linear operator corresponding to the
modified covariance kernel now has finite rank; /kðxÞ that are not eigenfunctions of this operator cannot contribute to
the inverse solution. The impact of this truncation is explored in Section 3.3.

2.5. Polynomial chaos acceleration

MCMC exploration of the reduced-dimensionality posterior (21) still requires repeated solutions of the forward model,
once for each proposed move of the Markov chain. While dimensionality reduction may reduce the number of such evalu-
ations, depending on the details of the MCMC sampler, it is desirable to avoid repeated forward solutions altogether.

Our previous work [6] introduced methods for accelerating Bayesian inference in this context, by using stochastic spectral
methods to propagate prior uncertainty through the forward problem. These methods effectively create a ‘‘surrogate” pos-
terior containing polynomial chaos (PC) representations of the forward model outputs. This density may be evaluated orders
of magnitude more quickly than the ‘‘direct” posterior containing the full forward problem. Here, we will use the Gaussian
process prior on M (and thus the prior distribution on c) to define an appropriate stochastic forward problem. The K–L expan-
sion of M ensures that we have chosen a concise representation of the prior uncertainty that is yet suitable for reconstructing
inverse solutions. Beginning with polynomial chaos expansions, elements of this approach are described below.

2.5.1. Forward propagation of uncertainty
Once again let ðX;U; PÞ be a probability space on which we define a random process X : X! RD with index set D # RN .

Also, let fniðxÞg1i¼1 be i.i.d. standard normal random variables on X. Then any square-integrable X has the following
representation:
XðxÞ ¼ a0C0 þ
X1
i1¼1

ai1 C1ðni1 Þ þ
X1
i1¼1

Xi1

i2¼1

ai1 i2 C2ðni1 ; ni2 Þ þ
X1
i1¼1

Xi1

i2¼1

Xi2

i3¼1

ai1 i2 i3 C3ðni1 ; ni2 ; ni3 Þ þ � � � ; ð22Þ
where Cp is the Wiener polynomial chaos of order p [7,9,56] and the ai1 i2 ... may be functions on D. This expansion can be re-
written in a more compact form
XðxÞ ¼
X1
k¼0

âkWkðn1; n2; . . .Þ; ð23Þ
where there is a one-to-one correspondence between the coefficients and functionals in (22) and in (23) [9]. For the standard
normal ni chosen above, orthogonality of successive Cp requires that the Cp be multivariate Hermite polynomials; both these
and the corresponding Wk may be generated from univariate Hermite polynomials by taking tensor products.

Of course, in computations it is not useful to retain infinite summations, and one truncates the expansion both in order p
and in dimension n—i.e., by choosing a subset n ¼ fnki

gn
i¼1 of the infinite set fnig, ki 2 N. The total number of terms P in the

finite polynomial chaos expansion
XðxÞ ¼
XP

k¼0

xkWkðn1; n2; . . . ; nnÞ ð24Þ
is
P þ 1 ¼ ðnþ pÞ!
n!p!

: ð25Þ
Polynomial chaos (PC) expansions have been generalized to broader classes of orthogonal polynomials in the Askey scheme,
each family resulting from a different choice of distribution for the ni [10,57]. For each of these choices, orthogonality of the
polynomials WkðnÞ with respect to the inner product on L2ðXÞ is maintained:
hWiWji ¼
Z

WiðnðxÞÞWjðnðxÞÞdPðxÞ ¼
Z

WiðnÞWjðnÞqðnÞdn ¼ dijhW2
i i; ð26Þ
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where qðnÞ denotes the probability density of n. This property can be used to calculate the truncated PC representation of a
random variable f 2 L2ðXÞ by projecting onto the PC basis:
2 In t
function
~f ðxÞ ¼
XP

k¼0

fkWkðnÞ; f k ¼
hf ðXÞWki
hW2

ki
: ð27Þ
This orthogonal projection minimizes the error kf � ~fk2 on the space spanned by fWkgP
k¼0, where k � k2 is the inner-product

norm on L2ðXÞ.
Suppose that the behavior of f can be expressed as Oðf ;XÞ ¼ 0, where O is some deterministic operator and X is a random

variable or process with a known PC expansion X ¼
PP

i¼0xiWiðnÞ. Substituting PC expansions for f and X into this operator and
requiring the residual to be orthogonal to Wj for j ¼ 0 . . . P yields a set of coupled, deterministic equations for the PC coeffi-
cients fk:
O
XP

k

fkWk;
XP

i

xiWi

 !
Wj

* +
¼ 0; j ¼ 0 � � � P: ð28Þ
This Galerkin approach is known as ‘‘intrusive” spectral projection [9,16], in contrast to ‘‘non-intrusive” approaches in which
the inner product hf ðXÞWki is evaluated by sampling or quadrature, thus requiring repeated evaluations of f ðXÞ correspond-
ing to different realizations of n [14,58].

In practice, we employ a pseudospectral construction to perform intrusive projections efficiently for higher powers of ran-
dom variables, e.g. f ðXÞ ¼ Xj; j P 3, and have developed additional techniques for nonpolynomial functions f. These opera-
tions are incorporated into a library for ‘‘stochastic arithmetic,” detailed in [11].

2.5.2. Stochastic spectral formulation of Bayesian inference
In [6], we described three accelerated schemes for computing posterior estimates, all based on spectral solutions of a sto-

chastic forward problem: Monte Carlo sampling from the prior distribution, importance sampling, and MCMC. Here we focus
on the latter case. The essential idea is to construct a stochastic forward problem whose solution approximates the deter-
ministic forward model over the support of the prior.

Let us begin with (i) a finite-dimensional representation of the unknown quantity that is the object of inference, and (ii) a
prior distribution on the parameters of this representation. For instance, if the unknown quantity is a field MðxÞ endowed
with a Gaussian process prior, the finite representation may be a truncated K–L expansion with mode strengths c and priors
ci � Nð0;1Þ. The Bayesian formulation in Section 2.4 describes the inverse solution in terms of the posterior density of c,
which includes evaluations of the forward model GðMKð�ÞÞ. For simplicity, we shall abbreviate G 
MK as Gc; inputs to this
model are parameterized by c. Also, let C denote the support of the prior.

Now define a random vector �c ¼ gð�nÞ, each component of which is given by a PC expansion
�ci ¼ gið�nÞ ¼
XP

k¼0

gikWkð�nÞ: ð29Þ
This vector will serve as input to Gc, thus specifying a stochastic forward problem. Recall that the distribution of �n (e.g., stan-
dard normal) and the polynomial form of W (e.g., multivariate Hermite) are intrinsic properties of the PC basis. We do not
require that g be chosen such that �c is distributed according to the prior on c. Rather, we require only (1) that Nc ¼ g�1ðCÞ, the
inverse image of the support of the prior, be contained within the range of �n, and (2) that g be a diffeomorphism from Nc to C.

Next, using Galerkin projection to solve the stochastic forward problem, we obtain a PC representation for each compo-
nent of the model output. Here Gi is the ith component of Gc, and eGið�nÞ is its PC representation:
eGið�nÞ ¼
XP

k¼0

dikWkð�nÞ: ð30Þ
The forward prediction eG obtained in this fashion is a function of �n, and is a polynomial chaos approximation of Gcðgð�nÞÞ.
Note that both of these quantities are random variables, since �n is a random variable. But eG can also be evaluated with a
deterministic argument2; in this sense, eG is a polynomial approximation of the deterministic forward model Gc 
 g.

We would like to use this approximation to replace Gc in the likelihood function LðcÞ � pgðd� GcðcÞÞ:
LðgðnÞÞ 	 eLðnÞ � pgðd� eGðnÞÞ: ð31Þ
Implicit in this substitution is the change of variables c ¼ gðnÞ, i.e., from the input parameterization of Gc to the input param-
eterization of eG, enabled because g satisfies conditions (1) and (2) above.

We write the change of variables in terms of the posterior expectation of an arbitrary function f:
his exposition we have used�to identify the random variables �c and �n in order to avoid confusion with deterministic arguments to probability density
s, e.g., c and n below. Elsewhere, we revert to the usual notational convention and let context make clear the distinction between the two.
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Epc f ¼ Epn ðf 
 gÞ; ð32Þ
where pc � pðcjdÞ is the posterior density on c-space, and pn is the corresponding posterior density on n-space:
pnðnÞ / LðgðnÞÞpcðgðnÞÞjdet DgðnÞj: ð33Þ
Here, Dg denotes the Jacobian of g and pc is the prior density of c. Eliminating the forward model from the likelihood function
via (31) finally yields the ‘‘surrogate” posterior density ~pn:
~pnðnÞ / eLðnÞpcðgðnÞÞjdet DgðnÞj
/ pgðd� eGðnÞÞpcðgðnÞÞ det DgðnÞj j:

ð34Þ
This distribution may be explored with any suitable sampling strategy, in particular MCMC. Evaluating the density for pur-
poses of sampling may have negligible cost; nearly all the computational time may be spent in intrusive spectral projection,
obtaining the PC expansions in (30). Depending on model nonlinearities, the necessary size of the PC basis, and the number
of posterior samples required, this computational effort may be orders of magnitude less costly than exploring the posterior
via direct sampling. Accuracy of the surrogate posterior depends on the order and family of the PC basis, as well as on the
choice of transformation g—for instance, whether the distribution of �c assigns sufficient probability to regions of C favored by
the posterior on c. A detailed discussion of these issues can be found in [6].

2.6. Gaussian processes, K–L expansions, RKHS, and regularization

There are important connections between Gaussian process priors and regularization penalties in the corresponding
reproducing kernel Hilbert space (RKHS) norm. These connections can be understood in terms of the spectral expansion
of the covariance kernel, and it is useful to review these relationships in the present context.

The definition and properties of reproducing kernel Hilbert spaces are briefly reviewed in the Appendix. It is natural to
think of a positive definite reproducing kernel K as a covariance kernel, and indeed any Gaussian process can be associated
with a RKHS. Let XðtÞ; t 2 T be a centered Gaussian process with covariance kernel K. If K has more than a finite number of
non-zero eigenvalues, realizations of XðtÞ are almost surely not in the corresponding RKHS HðKÞ [59].3 However, there exists
an isometry between the two. In particular, let H be the Hilbert space spanned by XðtÞ: H ¼ spanfXt ; t 2 T g with inner product
hZi; Zji ¼ E½ZiZj� for Zi; Zj 2 H. It can be shown that H is isometrically isomorphic to HðKÞ [59,44].

Bayesian estimates with Gaussian process priors may lie in the corresponding RKHS, however [59,60]. Consider the case
of an inverse problem with Gaussian process prior GPð0;KÞ on the unknown function f. Details of the likelihood function and
forward model are unimportant here. For simplicity, we assume that the prior covariance is completely known. Let fi denote
the projection of f onto the ith K–L eigenfunction /i:
fi ¼
Z

D
f ðsÞ/iðsÞds; ð35Þ
where /i and ki are, as usual, eigenfunctions and eigenvalues of the linear operator corresponding to K. According to (11), the
prior distribution on each fi is Nð0; kiÞ. Then the posterior probability of the function f, pðf Þ, has the form:
J ¼ � logpðf Þ ¼ �log-likelihoodþ
X1

i

f 2
i

2ki
þ const ¼ � � � þ 1

2
kfk2

HðKÞ þ � � � ; ð36Þ
J is thus a RKHS-norm penalized cost functional, in which the Gaussian process prior provides the regularization penalty.
Minimizing J to obtain the MAP estimate of f is equivalent to finding a Tikhonov-regularized solution to the inverse problem,
with argmin J ¼ fMAP 2 HðKÞ. Changing the prior covariance kernel amounts to changing the RKHS norm and thus the nature
of the regularization penalty.

Moreover, there is an equivalence between the RKHS regularization functional kfkHðKÞ and a standard L2ðDÞ-norm penalty
kLfk2 containing the differential operator L: the reproducing kernel K is the Green’s function of the operator L�L, where L�

denotes the adjoint of L [5,38]. Thus a Gaussian kernel leads to a penalty on derivatives of all orders; the exponential covari-
ance kernel penalizes the square of the function value f ðsÞ and its derivative _f ðsÞ (i.e., a Sobolev H1 norm); and the covariance
kernel of Brownian motion, Kðs; tÞ ¼minðs; tÞ, leads to a penalty on the MAP estimate’s squared derivatives.

Finally, we note that the present scheme of K–L based inversion (Section 2.4) recalls the ‘‘weight space” view of Gaussian
process regression [41], in that we find weights on the set of feature vectors /k implied by the Gaussian process prior.

3. Numerical implementations and results

We explore the accuracy and efficiency of our dimensionality reduction approach by estimating inhomogeneous diffusiv-
ity fields in a transient diffusion problem. We pursue these inverse problems both with and without the added step of solving
an example of a GP whose realizations are not in the RKHS, consider standard Brownian motion. Sample paths are nowhere differentiable with
lity one, but members of the RKHS are differentiable almost everywhere, with square-integrable derivatives.



1870 Y.M. Marzouk, H.N. Najm / Journal of Computational Physics 228 (2009) 1862–1902
the stochastic forward problem to construct a surrogate posterior (Section 2.5). In particular, we consider a diffusion equa-
tion on the unit interval D ¼ ½0;1� with adiabatic boundaries:
ou
ot
¼ o

ox
mðxÞ ou

ox

� �
þ
XN

i¼1

siffiffiffiffiffiffiffi
2p
p

ri

exp � jli � xj2

2r2
i

 !
½1� Hðt � TiÞ�;

ou
ox

����
x¼0
¼ ou

ox

����
x¼1
¼ 0;

uðx; t ¼ 0Þ ¼ 0:

ð37Þ
The source term in (37) involves N localized sources, each active on the interval t 2 ½0; Ti� and centered at li 2 D with strength
si and width ri, i ¼ 1; . . . ;N. Source parameters are prescribed, and we infer mðxÞ from noisy measurements of the u-field at a
finite set of locations and times. This problem can be considered a prototype for the inverse estimation of an inhomogeneous
conductivity field or any analogous material or transport property, such as the permeability field in a porous medium
[28,61].

3.1. Inverse problem setup

The transient diffusion equation above may be cast as a forward model that predicts the value of the field at specific loca-
tions and times. Taking the diffusivity to be uniformly bounded away from zero, mðxÞ > m0 > 0, we define the log-diffusivity
MðxÞ � log½mðxÞ � m0�; this function is the input to the forward model. We evaluate the field at mn points
fuðxi; tjÞ : 1 6 i 6 m;1 6 j 6 ng. The ‘‘sensor locations” fx1; . . . ; xmg are uniformly spaced on D, including the endpoints, and
the measurement times ft1; . . . ; tng are uniformly spaced on an arbitrary time interval. Below, unless otherwise specified,
we use m ¼ 13 sensors, n ¼ 9 measurement times, and N ¼ 3 sources. The source locations are staggered with respect to
the sensors; i.e., they are placed at li 2 f0:25;0:50; 0:75g. We prescribe identical strengths si ¼ 100, shutoff times
Ti ¼ 0:01, and widths r2

i ¼ 10�3 for all three sources. We fix m0 ¼ 0:1. Measurements take place over the time interval
t 2 ½0:01;0:03�.

The u-field is described on a uniform grid with spacing h ¼ 1=48. Second-order centered differences are used to discretize
the diffusion terms. Time integration is via an explicit, second-order-accurate, Runge–Kutta–Chebyshev (RKC) scheme [62]
with Dt ¼ 10�4. For any input mðxÞ, the number of substeps in the RKC scheme is automatically determined by stability con-
straints upon setting �, the damping parameter that controls the extent of the stability region, to 2/13 [63]. Numerical res-
olution studies were conducted to validate the present choices of h and Dt.

Note that the forward model is nonlinear in mðxÞ. Consider the simple case of a uniform diffusivity, mðxÞ ¼ �m. Fig. 1 shows
the resulting forward maps, from log½�m� m0� to u, at a single measurement location and two successive times. The measure-
ment location, x� ¼ 1=6, is adjacent to a source at x ¼ 1=4. For very small diffusivities, the scalar introduced by the source
does not diffuse towards the sensor in appreciable quantity, and hence u is small; in this regime, the magnitude of the scalar
field rises with t and with �m. At very large diffusivities, the scalar introduced by all N sources rapidly diffuses towards all the
sensors and the u-field quickly becomes uniform, approaching u ¼

P
isiTi ¼ 3 as �mt !1. For intermediate diffusivities, the

measured value of u may decrease with rising �m: the scalar field, locally peaked at the nearby source, flattens as the diffu-
sivity increases, until the influence of the remaining sources is felt at sufficiently high �m, raising the local value of u once
again. The behavior of analogous forward maps in the case of nonuniform mðxÞ is expected to be even more complicated.

The inverse problem thus consists of inferring MðxÞ � log½mðxÞ � m0� from noisy measurements of uðxi; tjÞ. In the Bayesian
setting, we provide statistical information about the measurement process and about our prior knowledge of MðxÞ. We let
independent zero-mean Gaussian random variables gi � Nð0; 12Þ express the difference between ‘‘real-world” measurements
and model predictions, as specified in (18). In the examples below, we choose 1 ¼ 0:1. We endow MðxÞ with a zero-mean
Gaussian process prior M � GPð0;CÞ, where C is a stationary Gaussian covariance kernel:
Chðx1; x2Þ ¼ eC hðjx1 � x2jÞ ¼ h exp � jx1 � x2j2

2L2

 !
: ð38Þ
For simplicity, we assume that the correlation length L is known; in practical applications, an estimate of L will often be
available [28,61]. We do not, on the other hand, presume to know the scale h of the prior covariance. Adopting a fully Bayes-
ian approach, we let h be a hyperparameter endowed with a conjugate inverse gamma hyperprior, h � IGða; bÞ [64,65,53]:
pðhÞ ¼ ba

CðaÞ h
�a�1 exp � b

h

� �
: ð39Þ
In the examples below, we fix the shape parameter a ¼ 1 and the scale parameter b ¼ 1. This yields a proper but long-tailed
prior for h, with undefined mean and variance. The magnitude of the prior covariance h joins the remaining parameters
describing MðxÞ in the joint posterior density; we can then marginalize over h to obtain a posterior describing MðxÞ alone
(see Section 2.3). Note that when considering MAP estimates of M conditioned on h, the ratio 12=h is akin to the regulariza-
tion parameter appearing in deterministic inversion; thus we are effectively estimating the strength of the regularization
when conditioning on the data [4].
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In Sections 3.2, 3.3, and 3.4, we will solve the inverse problem for four different ‘‘target profiles” MðxÞ: a simple linear
profile, a sinusoidal profile, a profile randomly drawn from the Gaussian process prior with L ¼ 0:3; h ¼ 1:0, and a well-
shaped profile. An additional target profile is introduced in Section 3.6. For each profile, a noisy data vector d is generated
by solving the deterministic forward problem with the target log-diffusivity, then perturbing the resulting value of u at each
sensor location/time with independent samples of Gaussian noise gi � Nð0; 12Þ. To avoid an ‘‘inverse crime” [4], we generate
the mn values of uðxi; tjÞ by solving the forward problem at a much higher resolution than that used in the inversion, i.e., with
h ¼ 1=408 and a correspondingly finer Dt.

3.2. Grid-based inversion

We begin with a straightforward full-dimensional Bayesian approach to the inverse problem, as described at the start of
Section 2.4. Let MðxÞ be represented on a finite collection of points fxign

i¼1 2 D; an obvious choice with adequate resolution is
the collection of grid points used to discretize the forward model, uniformly spaced on the unit interval with xiþ1 � xi ¼ h.
Then we can write both the prior and posterior densities in terms of m ¼ ðMðx1Þ; . . . ;MðxnÞÞ:
pðm; hjdÞ / pðdjmÞ � pðmjhÞ � pðhÞ / pgðd� GðmÞÞ � h�
n
2 exp �1

2
mTR�1

h m
� �

� pðhÞ

/ exp � ½d� GðmÞ�T ½d� GðmÞ�
212

 !
� h�

n
2 exp �1

2
mTR�1

h m
� �

� h�a�1 exp � b
h

� �
; ð40Þ
where ðRhÞij � Chðxi; xjÞ.
Directly applying a Metropolis–Hastings algorithm to this posterior, however, is not likely to be successful. Simple pro-

posal distributions for m, such as normal distributions centered at the current position of the chain, generate candidate
points with very low acceptance probabilities—even when applied component-at-a-time [61]. These proposals do not ac-
count for correlations among neighboring components of m. We surmount this issue with a change of variables, using
the Cholesky factorization of the prior covariance matrix, using h ¼ 1: Rðh¼1Þ ¼ LLT . If z is vector of n i.i.d. standard normal
random variables, then, 8h,
m ¼
ffiffiffi
h
p

Lz ð41Þ
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will have a zero-mean multivariate normal distribution with covariance Rh. (Multiplication by L is analogous to, in the con-
tinuous case, generating samples of a Gaussian process by convolution with white noise [66].) Thus the Nð0;RhÞ prior distri-
bution on m reduces to a Gaussian prior on z with diagonal covariance, Nð0; IÞ. Equivalently, we can write m ¼ Lz and let the
scale parameter h control the prior variance of z � Nð0; hIÞ, thus reparameterizing the posterior density as follows:
pðz; hjdÞ / exp � ½d� GðLzÞ�T ½d� GðLzÞ�
212

 !
� h�

n
2 exp � zT z

2h

� �
� h�a�1 exp � b

h

� �
: ð42Þ
We use a Metropolis–Hastings algorithm to simulate samples from this distribution [55]. For the scale parameter h, we apply
Gibbs updates: the full conditional pðhjz;dÞ is proportional to IG aþ n=2; bþ

Pn
i¼1z2

i

� �
=2

� �
[64], so we sample directly from

this distribution with acceptance probability 1. For the remaining parameters z, we use single-component random-walk
Metropolis updates: each proposal distribution qð�j�Þ is a univariate normal centered on the current position of the chain.
It may be possible to increase the efficiency of this sampler by using single-component updating for the first few components
of z and block updating for the higher-index, less important components [28], but we do not pursue such fine-tuning here.
MCMC yields a series of samples fðzðsÞ; hðsÞÞg, which are easily transformed to fðmðsÞ; hðsÞÞg. From these samples, we can esti-
mate posterior expectations (e.g., means, variances, higher moments), extract marginal densities pðMðxiÞjdÞ, and estimate
quantiles of the marginal distributions.

Figs. 2–4 show the results of grid-based inversion with several target profiles. Since we are not inferring the prior corre-
lation length, in each case we have assumed a value that reflects characteristic length scales of the target: L ¼ 1:0 for the
linear profile (not shown), L ¼ 0:2 for the sinusoidal profile, L ¼ 0:1 for the well-shaped profile, and L ¼ 0:3 for the profile
corresponding to a random draw from the GP prior. Figs. 2–4(a) show the posterior mean and standard deviation, along with
five samples from each posterior distribution. In part (b) of these figures, we extract one-dimensional marginal distributions
of MðxÞ at each grid point xi, then plot the median and 5% and 95% quantiles of the distributions. Even though statistical
dependence among different spatial locations has been marginalized away, these profiles reflect an envelope of uncertainty
in the inverse solution. In all cases, uncertainty in the log-diffusivity is greatest near the boundaries, with some additional
rise near the center of the domain. All of the results presented here are based on 6� 105 MCMC samples; we find negligible
change in the estimated moments and quantiles with further iterations.

In three of the four cases above (the linear, sinusoidal, and random-draw targets), the posterior mean and median are
good estimates of the true profile; the true log-diffusivity is generally contained within the credibility intervals bounded
by the marginal quantiles. Mismatch with the true profile may be ascribed to limited sensor resolution (in space and in time),
noise in the data, and the interaction of these conditions with the physics of the forward model. Reducing the noise in the
data or introducing more finely-spaced sensors then yields closer agreement with the true profile. This is demonstrated in
Fig. 6, which compares the posterior mean, conditioned on several different data sets, to the true random-draw target profile.

With the well-shaped target (Fig. 4), however, the inferred profile is smoother than the true profile. While the location of
the well (0:4 < x < 0:7) may be surmised from the posterior, the true profile does not fall entirely within the marginal quan-
tiles. Here, information encoded in the prior is actually inconsistent with the well-shaped log-diffusivity. Even with a small
correlation length, a GP prior with a Gaussian covariance encodes significant smoothness, assigning very small probability to
sharp variations. The posterior distribution reflects this belief in the character of the log-diffusivity profile. To obtain more
appropriate reconstructions and credibility intervals in this case, the prior distribution must be chosen more carefully. Tar-
antola [5] suggests that if discontinuities are expected, their geometric properties should enter explicitly into the parame-
terization of the inverse problem. One may also construct structural priors, typically Gaussian but not isotropic or stationary,
that encode the location and geometry of non-smooth features [4,67,68].

Since the full posterior is a distribution on nþ 1-dimensional space, it contains much more information than can be
shown in Figs. 2–4. Consider, for instance, the change in the covariance of MðxÞ from the prior to the posterior. Computing
Var½m� ¼ Cov½MðxiÞ;MðxjÞ� requires marginalizing over the hyperparameter h. The prior marginal, with density
pðmÞ ¼

R1
0 pðmjhÞpðhÞdh, is a multivariate t-distribution; its covariance can be obtained analytically as bR=ða� 1Þ for

a > 1. The posterior covariance is estimated numerically from the MCMC samples. Fig. 5(a) shows the prior covariance with
L ¼ 0:3; in this case only, we put a ¼ 3 and b ¼ 2 so the magnitude of the marginal prior covariance is well-defined. Fig. 5(b)
shows the corresponding posterior covariance, again with a ¼ 3 and b ¼ 2, conditioned on the noisy data vector used to infer
the random-draw target in Fig. 2. The posterior covariance clearly reflects a nonstationary process, and its overall scale is
more than an order of magnitude smaller than the prior covariance. The diagonal of the posterior covariance is analogous
to the square of the standard deviation in Fig. 2(a). Decay of the covariance away from the diagonal reflects the character
of spatial variation in the log-diffusivity profiles comprising the inverse solution.

It is important to note that, because the forward operator G is nonlinear, the posterior distributions shown here (whether
1-D marginals or full joint distributions) are not in general Gaussian or even symmetric.

3.3. Reduced-dimensionality inversion

Now we pursue a reduced-dimensionality solution of the inverse problem by exploring the posterior distribution of the
weights ck of a finite number of K–L modes, as described in Section 2.4. First, we must determine the eigenfunctions and
eigenvalues appearing in the K–L expansions. For the Gaussian covariance kernel (38) on D ¼ ½0;1�, there is no analytical
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Fig. 2. Grid-based inversion of a log-diffusivity profile randomly drawn from a Gaussian process with L ¼ 0:3 and scale parameter h ¼ 1:0: (a) Mean,
standard deviation, and five posterior realizations; (b) Median, 1-D credibility intervals, and true profile.
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solution for the spectral decomposition of the corresponding integral operator. Instead, we solve the integral Eq. (8) numer-
ically, using the Nystrom method [69] with a Gauss–Legendre quadrature rule and a LAPACK solver for the first K eigenvalues
and eigenvectors of the resulting real symmetric matrix.
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The hyperparameter h is treated as in the previous section. The scale of the covariance kernel does not affect the eigen-
functions /kðxÞ; it simply multiplies the eigenvalues kk. Thus, we can compute the K–L expansion of MðxÞ � GPð0;ChÞ while
fixing h ¼ 1, and let the hyperparameter control the prior variance of the random variables ck, c � Nð0; hIÞ. The posterior den-
sity in (21) is re-written as follows:
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Fig. 4. Grid-based inversion of a well-shaped log-diffusivity profile: (a) Mean, standard deviation, and five posterior realizations; (b) Median, 1-D credibility
intervals, and true profile.
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pðc; hjdÞ / pðdjcÞpðcjhÞpðhÞ / exp �ðd� GðMKðcÞÞÞTðd� GðMKðcÞÞÞ
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where the forward model G now maps functions M : D! R, representing the log-diffusivity, to Rmn. MKðcÞ denotes the
K-term K–L expansion (13) evaluated at c:
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MKðx; cÞ ¼
XK

k¼1

ffiffiffiffiffi
kk

p
ck/kðxÞ: ð44Þ
MCMC simulation from the posterior distribution proceeds as in Section 3.2: random-walk Metropolis updates are used for
the parameters representing the field (here, c) and Gibbs updates are used for the hyperparameter h. Figs. 7–9 show the
results of K–L-based inversion with various target profiles. Results obtained with a sufficiently large number of K–L modes
K become indistinguishable from the grid-based inverse solutions. As expected, shorter prior correlation lengths require a
larger number of K–L modes for accurate inverse solutions. Consider the remainder of the total prior variance integrated over
the domain D (15), i.e., 1�

PK
k¼1kk, shown in Fig. 10. This quantity decays exponentially fast with increasing K, reflecting the

decay of the eigenvalues of the Gaussian covariance kernel (38), but eigenvalues corresponding to large-L kernels decay more
quickly than those corresponding to small L. Since the distributions of ck are altered by conditioning on d, the relative impor-
tance of the K–L modes changes in the posterior, but still decays at larger index. Fig. 11 compares MCMC estimates of the
posterior moments of MðxÞ, obtained via grid-based inversion, to MCMC-estimated posterior moments of MKðxÞ obtained
via K–L-based inversion with varying numbers of modes. In particular, we compute the L2 distance between estimates of

the posterior mean, kl̂ðMKðxÞÞ � l̂ðMðxÞÞk2 ¼
R

D jl̂ðMKðxÞÞ � l̂ðMðxÞÞj2dx
� 	1=2

, and the L2 distance between estimates of

the posterior standard deviation, kr̂ðMKðxÞÞ � r̂ðMðxÞÞk2. Differences between these posterior estimates at first fall rapidly
with increasing K, but then plateau. The plateau region appears at smaller K for the large-L cases (e.g., the line profile)
and at larger K for the small-L cases (e.g., the well profile), and reflects the fact that differences between moments of the grid
and K–L-based inverse solutions eventually become comparable to the variability of the MCMC estimates themselves. In-
deed, each realization of a Markov chain yields slightly different estimates of the posterior mean and standard deviation,
and differences among these realizations account for continued ‘‘jitter” in the plateau regions. To illustrate the spread in
these estimates, we have plotted results from additional realizations of the MCMC chain at K ¼ 6, 8, and 10, for the ran-
dom-draw target. (Each realization corresponds to a distinct choice of random seed.) Differences in the magnitude of the
plateau region associated with each target profile reflect the fact that variance of an MCMC estimate is dependent on the
variance of the actual quantity being estimated [70]; the posterior associated with the well-shaped target, for instance,
shows much larger variances than the posterior associated with the linear target.

Further insight into the contribution of each K–L mode to the inverse solution is obtained by examining boxplots of the
posterior marginals of the mode strengths. In particular, we consider marginal densities of

ffiffiffiffiffi
kk
p

ck, the scaled contribution of
each K–L mode. The K–L eigenfunctions multiplied by these factors each have an L2 norm of unity, and thus the relative
importance of each eigenfunction—e.g., each mode’s contribution to the mean and spread of the posterior—is captured by
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Fig. 7. K–L-based inversion of the random-draw log-diffusivity profile, K ¼ 6: (a) Mean, standard deviation, and five posterior realizations; (b) Median, 1-D
credibility intervals, and true profile.
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the boxplots in Fig. 12. Results are reported for the random-draw and well-shaped targets. The horizontal line at the center of
each box marks the median of the posterior marginal pð

ffiffiffiffiffi
kk
p

ckjdÞ; the extent of each box marks the 25% and 75% quantiles of
the posterior marginal; and the vertical lines span the entire range of the MCMC samples. The importance of each mode does
not decrease strictly with k. For instance, K–L mode /L¼0:3

4 ðxÞ contributes more to the posterior of the random-draw target
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Fig. 8. K–L-based inversion of the sinusoidal log-diffusivity profile, K ¼ 10: (a) Mean, standard deviation, and five posterior realizations; (b) Median, 1-D
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than /L¼0:3
2 ðxÞ and /L¼0:3

3 ðxÞ; with the well-shaped target, mode /L¼0:1
9 ðxÞ contributes more to the posterior than /L¼0:1

7 ðxÞ. At
sufficiently large index, however, the (exponential) decrease of the kk takes over: variances of the mode strengths decrease
and the medians tend towards zero.
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Spatial correlations are also well-reproduced by the reduced-dimensionality inverse solution. Consider contours of the
posterior covariance Cov½Mðx1Þ;Mðx2Þ�, shown in Fig. 13. Solid lines are obtained via the grid-based inversion described in
Section 3.3, while dashed lines represent the posterior covariance computed with K K–L modes. Very close agreement is ob-
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served with increasing K. This result may be somewhat surprising, as /kðxÞ are not eigenfunctions of the posterior covariance
and thus not an optimal basis for posterior in the sense of a K–L representation. Nonetheless, a modest number of these
modes is able to capture the posterior covariance.

Eigenfunctions aside, the ability to reproduce the posterior covariance also depends on the emerg